7 research outputs found

    Stability analysis of a general class of singularly perturbed linear hybrid systems

    Full text link
    Motivated by a real problem in steel production, we introduce and analyze a general class of singularly perturbed linear hybrid systems with both switches and impulses, in which the slow or fast nature of the variables can be mode-dependent. This means that, at switching instants, some of the slow variables can become fast and vice-versa. Firstly, we show that using a mode-dependent variable reordering we can rewrite this class of systems in a form in which the variables preserve their nature over time. Secondly, we establish, through singular perturbation techniques, an upper bound on the minimum dwell-time ensuring the overall system's stability. Remarkably, this bound is the sum of two terms. The first term corresponds to an upper bound on the minimum dwell-time ensuring the stability of the reduced order linear hybrid system describing the slow dynamics. The order of magnitude of the second term is determined by that of the parameter defining the ratio between the two time-scales of the singularly perturbed system. We show that the proposed framework can also take into account the change of dimension of the state vector at switching instants. Numerical illustrations complete our study

    Opinion dynamics with decaying confidence: application to community detection in graphs. http://arxiv.org/abs/0911.5239

    No full text
    12 pagesInternational audienceWe study a class of discrete-time multi-agent systems modeling opinion dynamics with decaying confidence. We consider a network of agents where each agent has an opinion. At each time step, each agent exchanges its opinion with its neighbors and updates its opinion by taking into account only its neighbors opinions that differs from its own opinion less than some confidence bound. This confidence bound is decaying: an agent gives repetitively confidence only to its neighbors that approach sufficiently fast its own opinion. Essentially, the agents try to reach an agreement with the constraint that it has to be approached no slower than a prescribed convergence rate. Under that constraint, global consensus may not be achieved and only local agreements may be reached. The agents reaching a local agreement form communities inside the network. In this paper, we analyze this opinion dynamics model: we show that communities correspond to asymptotically connected component of the network and give an algebraic characterization of communities in terms of eigenvalues of the matrix defining the collective dynamics. Finally, we apply our opinion dynamics model to address the problem of community detection in graphs. We propose a new formulation of the community detection problem based on eigenvalues of normalized Laplacian matrix of graphs and show that this problem can be solved using our opinion dynamics model. We provide experimental results that show that our opinion dynamics model provides an approach to community detection that is not only appealing but also effective
    corecore